
opentracing-python
Release 1.2

Jun 27, 2018

Contents

1 Required Reading 3

2 Status 5

3 Usage 7
3.1 Inbound request . 7

4 Outbound request 9
4.1 Scope and within-process propagation . 10
4.2 Scope managers . 11

5 Development 13
5.1 Tests . 13
5.2 Testbed suite . 13

6 Instrumentation Tests 15
6.1 Documentation . 15
6.2 LICENSE . 15
6.3 Releases . 15

i

ii

opentracing-python, Release 1.2

This library is a Python platform API for OpenTracing.

Contents 1

https://gitter.im/opentracing/public
https://travis-ci.org/opentracing/opentracing-python
https://badge.fury.io/py/opentracing

opentracing-python, Release 1.2

2 Contents

CHAPTER 1

Required Reading

In order to understand the Python platform API, one must first be familiar with the OpenTracing project and terminol-
ogy more specifically.

3

http://opentracing.io
http://opentracing.io/documentation/pages/spec.html
http://opentracing.io/documentation/pages/spec.html

opentracing-python, Release 1.2

4 Chapter 1. Required Reading

CHAPTER 2

Status

In the current version, opentracing-python provides only the API and a basic no-op implementation that can be
used by instrumentation libraries to collect and propagate distributed tracing context.

Future versions will include a reference implementation utilizing an abstract Recorder interface, as well as a Zipkin-
compatible Tracer.

5

http://openzipkin.github.io

opentracing-python, Release 1.2

6 Chapter 2. Status

CHAPTER 3

Usage

The work of instrumentation libraries generally consists of three steps:

1. When a service receives a new request (over HTTP or some other protocol), it uses OpenTracing’s inject/extract
API to continue an active trace, creating a Span object in the process. If the request does not contain an active
trace, the service starts a new trace and a new root Span.

2. The service needs to store the current Span in some request-local storage, (called Span activation) where it
can be retrieved from when a child Span must be created, e.g. in case of the service making an RPC to another
service.

3. When making outbound calls to another service, the current Span must be retrieved from request-local storage,
a child span must be created (e.g., by using the start_child_span() helper), and that child span must be
embedded into the outbound request (e.g., using HTTP headers) via OpenTracing’s inject/extract API.

Below are the code examples for the previously mentioned steps. Implementation of request-local storage needed for
step 2 is specific to the service and/or frameworks / instrumentation libraries it is using, exposed as a ScopeManager
child contained as Tracer.scope_manager. See details below.

3.1 Inbound request

Somewhere in your server’s request handler code:

def handle_request(request):
span = before_request(request, opentracing.tracer)
store span in some request-local storage using Tracer.scope_manager,
using the returned `Scope` as Context Manager to ensure
`Span` will be cleared and (in this case) `Span.finish()` be called.
with tracer.scope_manager.activate(span, True) as scope:

actual business logic
handle_request_for_real(request)

def before_request(request, tracer):

(continues on next page)

7

opentracing-python, Release 1.2

(continued from previous page)

span_context = tracer.extract(
format=Format.HTTP_HEADERS,
carrier=request.headers,

)
span = tracer.start_span(

operation_name=request.operation,
child_of(span_context))

span.set_tag('http.url', request.full_url)

remote_ip = request.remote_ip
if remote_ip:

span.set_tag(tags.PEER_HOST_IPV4, remote_ip)

caller_name = request.caller_name
if caller_name:

span.set_tag(tags.PEER_SERVICE, caller_name)

remote_port = request.remote_port
if remote_port:

span.set_tag(tags.PEER_PORT, remote_port)

return span

8 Chapter 3. Usage

CHAPTER 4

Outbound request

Somewhere in your service that’s about to make an outgoing call:

from opentracing.ext import tags
from opentracing.propagation import Format
from opentracing_instrumentation import request_context

create and serialize a child span and use it as context manager
with before_http_request(

request=out_request,
current_span_extractor=request_context.get_current_span):

actual call
return urllib2.urlopen(request)

def before_http_request(request, current_span_extractor):
op = request.operation
parent_span = current_span_extractor()
outbound_span = opentracing.tracer.start_span(

operation_name=op,
child_of=parent_span

)

outbound_span.set_tag('http.url', request.full_url)
service_name = request.service_name
host, port = request.host_port
if service_name:

outbound_span.set_tag(tags.PEER_SERVICE, service_name)
if host:

outbound_span.set_tag(tags.PEER_HOST_IPV4, host)
if port:

outbound_span.set_tag(tags.PEER_PORT, port)

http_header_carrier = {}

(continues on next page)

9

opentracing-python, Release 1.2

(continued from previous page)

opentracing.tracer.inject(
span_context=outbound_span,
format=Format.HTTP_HEADERS,
carrier=http_header_carrier)

for key, value in http_header_carrier.iteritems():
request.add_header(key, value)

return outbound_span

4.1 Scope and within-process propagation

For getting/setting the current active Span in the used request-local storage, OpenTracing requires that every Tracer
contains a ScopeManager that grants access to the active Span through a Scope. Any Span may be transferred
to another task or thread, but not Scope.

Access to the active span is straightforward.
scope = tracer.scope_manager.active()
if scope is not None:

scope.span.set_tag('...', '...')

The common case starts a Scope that’s automatically registered for intra-process propagation via ScopeManager.

Note that start_active_span('...') automatically finishes the span on Scope.close()
(start_active_span('...', finish_on_close=False) does not finish it, in contrast).

Manual activation of the Span.
span = tracer.start_span(operation_name='someWork')
with tracer.scope_manager.activate(span, True) as scope:

Do things.

Automatic activation of the Span.
finish_on_close is a required parameter.
with tracer.start_active_span('someWork', finish_on_close=True) as scope:

Do things.

Handling done through a try construct:
span = tracer.start_span(operation_name='someWork')
scope = tracer.scope_manager.activate(span, True)
try:

Do things.
except Exception as e:

scope.set_tag('error', '...')
finally:

scope.finish()

If there is a Scope, it will act as the parent to any newly started Span unless the programmer passes
ignore_active_span=True at start_span()/start_active_span() time or specified parent context
explicitly:

scope = tracer.start_active_span('someWork', ignore_active_span=True)

Each service/framework ought to provide a specific ScopeManager implementation that relies on their own request-
local storage (thread-local storage, or coroutine-based storage for asynchronous frameworks, for example).

10 Chapter 4. Outbound request

opentracing-python, Release 1.2

4.2 Scope managers

This project includes a set of ScopeManager implementations under the opentracing.ext.scope_manager
submodule, which can be imported on demand:

from opentracing.ext.scope_manager import ThreadLocalScopeManager

There exist implementations for thread-local (the default), gevent, Tornado and asyncio:

from opentracing.ext.scope_manager.gevent import GeventScopeManager # requires gevent
from opentracing.ext.scope_manager.tornado import TornadoScopeManager # requires
→˓Tornado
from opentracing.ext.scope_manager.asyncio import AsyncioScopeManager # requires
→˓Python 3.4 or newer.

4.2. Scope managers 11

opentracing-python, Release 1.2

12 Chapter 4. Outbound request

CHAPTER 5

Development

5.1 Tests

virtualenv env
. ./env/bin/activate
make bootstrap
make test

5.2 Testbed suite

A testbed suite designed to test API changes and experimental features is included under the testbed directory. For
more information, see the Testbed README.

13

testbed/README.md

opentracing-python, Release 1.2

14 Chapter 5. Development

CHAPTER 6

Instrumentation Tests

This project has a working design of interfaces for the OpenTracing API. There is a MockTracer to facilitate unit-
testing of OpenTracing Python instrumentation.

from opentracing.mocktracer import MockTracer

tracer = MockTracer()
with tracer.start_span('someWork') as span:

pass

spans = tracer.finished_spans()
someWorkSpan = spans[0]

6.1 Documentation

virtualenv env
. ./env/bin/activate
make bootstrap
make docs

The documentation is written to docs/_build/html.

6.2 LICENSE

[MIT License](./LICENSE).

6.3 Releases

Before new release, add a summary of changes since last version to CHANGELOG.rst

15

opentracing-python, Release 1.2

pip install zest.releaser[recommended]
prerelease
release
git push origin master --follow-tags
python setup.py sdist upload -r pypi upload_docs -r pypi
postrelease
git push

6.3.1 Python API

Classes

class opentracing.Span(tracer, context)
Span represents a unit of work executed on behalf of a trace. Examples of spans include a remote procedure call,
or a in-process method call to a sub-component. Every span in a trace may have zero or more causal parents,
and these relationships transitively form a DAG. It is common for spans to have at most one parent, and thus
most traces are merely tree structures.

Span implements a context manager API that allows the following usage:

with tracer.start_span(operation_name='go_fishing') as span:
call_some_service()

In the context manager syntax it’s not necessary to call Span.finish()

context
Provides access to the SpanContext associated with this Span.

The SpanContext contains state that propagates from Span to Span in a larger trace.

Return type SpanContext

Returns the SpanContext associated with this Span.

finish(finish_time=None)
Indicates that the work represented by this Span has completed or terminated.

With the exception of the Span.context property, the semantics of all other Span methods are unde-
fined after Span.finish() has been invoked.

Parameters finish_time (float) – an explicit Span finish timestamp as a unix timestamp
per time.time()

get_baggage_item(key)
Retrieves value of the baggage item with the given key.

Parameters key (str) – key of the baggage item

Return type str

Returns value of the baggage item with given key, or None.

log(**kwargs)
DEPRECATED

log_event(event, payload=None)
DEPRECATED

log_kv(key_values, timestamp=None)
Adds a log record to the Span.

16 Chapter 6. Instrumentation Tests

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

opentracing-python, Release 1.2

For example:

span.log_kv({
"event": "time to first byte",
"packet.size": packet.size()})

span.log_kv({"event": "two minutes ago"}, time.time() - 120)

Parameters

• key_values (dict) – A dict of string keys and values of any type

• timestamp (float) – A unix timestamp per time.time(); current time if None

Return type Span

Returns the Span itself, for call chaining.

set_baggage_item(key, value)
Stores a Baggage item in the Span as a key/value pair.

Enables powerful distributed context propagation functionality where arbitrary application data can be
carried along the full path of request execution throughout the system.

Note 1: Baggage is only propagated to the future (recursive) children of this Span.

Note 2: Baggage is sent in-band with every subsequent local and remote calls, so this feature must be used
with care.

Parameters

• key (str) – Baggage item key

• value (str) – Baggage item value

Return type Span

Returns itself, for chaining the calls.

set_operation_name(operation_name)
Changes the operation name.

Parameters operation_name (str) – the new operation name

Return type Span

Returns the Span itself, for call chaining.

set_tag(key, value)
Attaches a key/value pair to the Span.

The value must be a string, a bool, or a numeric type.

If the user calls set_tag multiple times for the same key, the behavior of the Tracer is undefined, i.e. it
is implementation specific whether the Tracer will retain the first value, or the last value, or pick one
randomly, or even keep all of them.

Parameters

• key (str) – key or name of the tag. Must be a string.

• value (string or bool or int or float) – value of the tag.

Return type Span

Returns the Span itself, for call chaining.

6.3. Releases 17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

opentracing-python, Release 1.2

tracer
Provides access to the Tracer that created this Span.

Return type Tracer

Returns the Tracer that created this Span.

class opentracing.SpanContext
SpanContext represents Span state that must propagate to descendant Spans and across process boundaries.

SpanContext is logically divided into two pieces: the user-level “Baggage” (see Span.
set_baggage_item() and Span.get_baggage_item()) that propagates across Span boundaries
and any tracer-implementation-specific fields that are needed to identify or otherwise contextualize the
associated Span (e.g., a (trace_id, span_id, sampled) tuple).

baggage
Return baggage associated with this SpanContext. If no baggage has been added to the Span, returns
an empty dict.

The caller must not modify the returned dictionary.

See also: Span.set_baggage_item() / Span.get_baggage_item()

Return type dict

Returns baggage associated with this SpanContext or {}.

class opentracing.Scope(manager, span)
A scope formalizes the activation and deactivation of a Span, usually from a CPU standpoint. Many times a
Span will be extant (in that Span.finish() has not been called) despite being in a non-runnable state from
a CPU/scheduler standpoint. For instance, a Span representing the client side of an RPC will be unfinished but
blocked on IO while the RPC is still outstanding. A scope defines when a given Span is scheduled and on the
path.

Parameters

• manager (ScopeManager) – the ScopeManager that created this Scope.

• span (Span) – the Span used for this Scope.

close()
Marks the end of the active period for this Scope, updating ScopeManager.active in the process.

NOTE: Calling this method more than once on a single Scope leads to undefined behavior.

manager
Returns the ScopeManager that created this Scope.

Return type ScopeManager

span
Returns the Span wrapped by this Scope.

Return type Span

class opentracing.ScopeManager
The ScopeManager interface abstracts both the activation of a Span and access to an active Span/Scope.

activate(span, finish_on_close)
Makes a Span active.

Parameters

• span – the Span that should become active.

18 Chapter 6. Instrumentation Tests

https://docs.python.org/3/library/stdtypes.html#dict

opentracing-python, Release 1.2

• finish_on_close – whether Span should be automatically finished when Scope.
close() is called.

Return type Scope

Returns a Scope to control the end of the active period for span. It is a programming error to
neglect to call Scope.close() on the returned instance.

active
Returns the currently active Scope which can be used to access the currently active Scope.span.

If there is a non-null Scope, its wrapped Span becomes an implicit parent of any newly-created Span at
Tracer.start_active_span() time.

Return type Scope

Returns the Scope that is active, or None if not available.

class opentracing.Tracer(scope_manager=None)
Tracer is the entry point API between instrumentation code and the tracing implementation.

This implementation both defines the public Tracer API, and provides a default no-op behavior.

active_span
Provides access to the the active Span. This is a shorthand for Tracer.scope_manager.active.
span, and None will be returned if Scope.span is None.

Return type Span

Returns the active Span.

extract(format, carrier)
Returns a SpanContext instance extracted from a carrier of the given format, or None if no such
SpanContext could be found.

The type of carrier is determined by format. See the Format class/namespace for the built-in OpenTrac-
ing formats.

Implementations must raise UnsupportedFormatException if format is unknown or disallowed.

Implementations may raise InvalidCarrierException, SpanContextCorruptedException,
or implementation-specific errors if there are problems with carrier.

Parameters

• format – a python object instance that represents a given carrier format. format may be
of any type, and format equality is defined by python == equality.

• carrier – the format-specific carrier object to extract from

Return type SpanContext

Returns a SpanContext extracted from carrier or None if no such SpanContext could be
found.

inject(span_context, format, carrier)
Injects span_context into carrier.

The type of carrier is determined by format. See the Format class/namespace for the built-in OpenTrac-
ing formats.

Implementations must raise UnsupportedFormatException if format is unknown or disallowed.

Parameters

• span_context (SpanContext) – the SpanContext instance to inject

6.3. Releases 19

opentracing-python, Release 1.2

• format (Format) – a python object instance that represents a given carrier format. for-
mat may be of any type, and format equality is defined by python == equality.

• carrier – the format-specific carrier object to inject into

scope_manager
Provides access to the current ScopeManager.

Return type ScopeManager

start_active_span(operation_name, child_of=None, references=None, tags=None,
start_time=None, ignore_active_span=False, finish_on_close=True)

Returns a newly started and activated Scope.

The returned Scope supports with-statement contexts. For example:

with tracer.start_active_span('...') as scope:
scope.span.set_tag('http.method', 'GET')
do_some_work()

Span.finish() is called as part of scope deactivation through
the with statement.

It’s also possible to not finish the Span when the Scope context expires:

with tracer.start_active_span('...',
finish_on_close=False) as scope:

scope.span.set_tag('http.method', 'GET')
do_some_work()

Span.finish() is not called as part of Scope deactivation as
`finish_on_close` is `False`.

Parameters

• operation_name (str) – name of the operation represented by the new Span from
the perspective of the current service.

• child_of (Span or SpanContext) – (optional) a Span or SpanContext in-
stance representing the parent in a REFERENCE_CHILD_OF reference. If specified, the
references parameter must be omitted.

• references (list of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation for detail).

• tags (dict) – an optional dictionary of Span tags. The caller gives up ownership of
that dictionary, because the Tracer may use it as-is to avoid extra data copying.

• start_time (float) – an explicit Span start time as a unix timestamp per time.
time().

• ignore_active_span (bool) – (optional) an explicit flag that ignores the current
active Scope and creates a root Span.

• finish_on_close (bool) – whether Span should automatically be finished when
Scope.close() is called.

Return type Scope

Returns a Scope, already registered via the ScopeManager.

start_span(operation_name=None, child_of=None, references=None, tags=None, start_time=None,
ignore_active_span=False)

Starts and returns a new Span representing a unit of work.

20 Chapter 6. Instrumentation Tests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

opentracing-python, Release 1.2

Starting a root Span (a Span with no causal references):

tracer.start_span('...')

Starting a child Span (see also start_child_span()):

tracer.start_span(
'...',
child_of=parent_span)

Starting a child Span in a more verbose way:

tracer.start_span(
'...',
references=[opentracing.child_of(parent_span)])

Parameters

• operation_name (str) – name of the operation represented by the new Span from
the perspective of the current service.

• child_of (Span or SpanContext) – (optional) a Span or SpanContext repre-
senting the parent in a REFERENCE_CHILD_OF reference. If specified, the references
parameter must be omitted.

• references (list of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation for detail).

• tags (dict) – an optional dictionary of Span tags. The caller gives up ownership of
that dictionary, because the Tracer may use it as-is to avoid extra data copying.

• start_time (float) – an explicit Span start time as a unix timestamp per time.
time()

• ignore_active_span (bool) – an explicit flag that ignores the current active Scope
and creates a root Span.

Return type Span

Returns an already-started Span instance.

class opentracing.ReferenceType
A namespace for OpenTracing reference types.

See http://opentracing.io/spec for more detail about references, reference types, and CHILD_OF and FOL-
LOWS_FROM in particular.

class opentracing.Reference
A Reference pairs a reference type with a referenced SpanContext.

References are used by Tracer.start_span() to describe the relationships between Spans.

Tracer implementations must ignore references where referenced_context is None. This behavior allows
for simpler code when an inbound RPC request contains no tracing information and as a result Tracer.
extract() returns None:

parent_ref = tracer.extract(opentracing.HTTP_HEADERS, request.headers)
span = tracer.start_span(

'operation', references=child_of(parent_ref)
)

6.3. Releases 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
http://opentracing.io/spec

opentracing-python, Release 1.2

See child_of() and follows_from() helpers for creating these references.

class opentracing.Format
A namespace for builtin carrier formats.

These static constants are intended for use in the Tracer.inject() and Tracer.extract() methods.
E.g.:

tracer.inject(span.context, Format.BINARY, binary_carrier)

BINARY = 'binary'
The BINARY format represents SpanContexts in an opaque bytearray carrier.

For both Tracer.inject() and Tracer.extract() the carrier should be a bytearray instance.
Tracer.inject() must append to the bytearray carrier (rather than replace its contents).

HTTP_HEADERS = 'http_headers'
The HTTP_HEADERS format represents SpanContexts in a python dict mapping from character-
restricted strings to strings.

Keys and values in the HTTP_HEADERS carrier must be suitable for use as HTTP headers (without
modification or further escaping). That is, the keys have a greatly restricted character set, casing for the
keys may not be preserved by various intermediaries, and the values should be URL-escaped.

NOTE: The HTTP_HEADERS carrier dict may contain unrelated data (e.g., arbitrary gRPC metadata).
As such, the Tracer implementation should use a prefix or other convention to distinguish tracer-specific
key:value pairs.

TEXT_MAP = 'text_map'
The TEXT_MAP format represents SpanContexts in a python dict mapping from strings to strings.

Both the keys and the values have unrestricted character sets (unlike the HTTP_HEADERS format).

NOTE: The TEXT_MAP carrier dict may contain unrelated data (e.g., arbitrary gRPC metadata). As
such, the Tracer implementation should use a prefix or other convention to distinguish tracer-specific
key:value pairs.

Utility Functions

opentracing.start_child_span(parent_span, operation_name, tags=None, start_time=None)
A shorthand method that starts a child_of Span for a given parent Span.

Equivalent to calling:

parent_span.tracer().start_span(
operation_name,
references=opentracing.child_of(parent_span.context),
tags=tags,
start_time=start_time)

Parameters

• parent_span (Span) – the Span which will act as the parent in the returned Spans
child_of reference.

• operation_name (str) – the operation name for the child Span instance

• tags (dict) – optional dict of Span tags. The caller gives up ownership of that dict,
because the Tracer may use it as-is to avoid extra data copying.

22 Chapter 6. Instrumentation Tests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

opentracing-python, Release 1.2

• start_time (float) – an explicit Span start time as a unix timestamp per time.
time().

Return type Span

Returns an already-started Span instance.

opentracing.child_of(referenced_context=None)
child_of is a helper that creates CHILD_OF References.

Parameters referenced_context (SpanContext) – the (causal parent) SpanContext to
reference. If None is passed, this reference must be ignored by the Tracer.

Return type Reference

Returns A reference suitable for Tracer.start_span(..., references=...)

opentracing.follows_from(referenced_context=None)
follows_from is a helper that creates FOLLOWS_FROM References.

Parameters referenced_context (SpanContext) – the (causal parent) SpanContext to
reference. If None is passed, this reference must be ignored by the Tracer.

Return type Reference

Returns A Reference suitable for Tracer.start_span(..., references=...)

Exceptions

class opentracing.InvalidCarrierException
InvalidCarrierException should be used when the provided carrier instance does not match what the format
argument requires.

See Tracer.inject() and Tracer.extract().

class opentracing.SpanContextCorruptedException
SpanContextCorruptedException should be used when the underlying SpanContext state is seemingly
present but not well-formed.

See Tracer.inject() and Tracer.extract().

class opentracing.UnsupportedFormatException
UnsupportedFormatException should be used when the provided format value is unknown or disallowed by the
Tracer.

See Tracer.inject() and Tracer.extract().

MockTracer

class opentracing.mocktracer.MockTracer(scope_manager=None)
MockTracer makes it easy to test the semantics of OpenTracing instrumentation.

By using a MockTracer as a Tracer implementation for tests, a developer can assert that Span properties and
relationships with other Spans are defined as expected by instrumentation code.

By default, MockTracer registers propagators for Format.TEXT_MAP, Format.HTTP_HEADERS and
Format.BINARY. The user should call register_propagator() for each additional inject/extract for-
mat.

6.3. Releases 23

https://docs.python.org/3/library/functions.html#float

opentracing-python, Release 1.2

extract(format, carrier)
Returns a SpanContext instance extracted from a carrier of the given format, or None if no such
SpanContext could be found.

The type of carrier is determined by format. See the Format class/namespace for the built-in OpenTrac-
ing formats.

Implementations must raise UnsupportedFormatException if format is unknown or disallowed.

Implementations may raise InvalidCarrierException, SpanContextCorruptedException,
or implementation-specific errors if there are problems with carrier.

Parameters

• format – a python object instance that represents a given carrier format. format may be
of any type, and format equality is defined by python == equality.

• carrier – the format-specific carrier object to extract from

Return type SpanContext

Returns a SpanContext extracted from carrier or None if no such SpanContext could be
found.

finished_spans()
Return a copy of all finished Spans started by this MockTracer (since construction or the last call to
reset())

Return type list

Returns a copy of the finished Spans.

inject(span_context, format, carrier)
Injects span_context into carrier.

The type of carrier is determined by format. See the Format class/namespace for the built-in OpenTrac-
ing formats.

Implementations must raise UnsupportedFormatException if format is unknown or disallowed.

Parameters

• span_context (SpanContext) – the SpanContext instance to inject

• format (Format) – a python object instance that represents a given carrier format. for-
mat may be of any type, and format equality is defined by python == equality.

• carrier – the format-specific carrier object to inject into

register_propagator(format, propagator)
Register a propagator with this MockTracer.

Parameters

• format (string) – a Format identifier like TEXT_MAP

• propagator (Propagator) – a Propagator instance to handle inject/extract calls
involving format

reset()
Clear the finished Spans queue.

Note that this does not have any effect on Spans created by MockTracer that have not finished yet; those
will still be enqueued in finished_spans() when they finish().

24 Chapter 6. Instrumentation Tests

https://docs.python.org/3/library/stdtypes.html#list

opentracing-python, Release 1.2

start_active_span(operation_name, child_of=None, references=None, tags=None,
start_time=None, ignore_active_span=False, finish_on_close=True)

Returns a newly started and activated Scope.

The returned Scope supports with-statement contexts. For example:

with tracer.start_active_span('...') as scope:
scope.span.set_tag('http.method', 'GET')
do_some_work()

Span.finish() is called as part of scope deactivation through
the with statement.

It’s also possible to not finish the Span when the Scope context expires:

with tracer.start_active_span('...',
finish_on_close=False) as scope:

scope.span.set_tag('http.method', 'GET')
do_some_work()

Span.finish() is not called as part of Scope deactivation as
`finish_on_close` is `False`.

Parameters

• operation_name (str) – name of the operation represented by the new Span from
the perspective of the current service.

• child_of (Span or SpanContext) – (optional) a Span or SpanContext in-
stance representing the parent in a REFERENCE_CHILD_OF reference. If specified, the
references parameter must be omitted.

• references (list of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation for detail).

• tags (dict) – an optional dictionary of Span tags. The caller gives up ownership of
that dictionary, because the Tracer may use it as-is to avoid extra data copying.

• start_time (float) – an explicit Span start time as a unix timestamp per time.
time().

• ignore_active_span (bool) – (optional) an explicit flag that ignores the current
active Scope and creates a root Span.

• finish_on_close (bool) – whether Span should automatically be finished when
Scope.close() is called.

Return type Scope

Returns a Scope, already registered via the ScopeManager.

start_span(operation_name=None, child_of=None, references=None, tags=None, start_time=None,
ignore_active_span=False)

Starts and returns a new Span representing a unit of work.

Starting a root Span (a Span with no causal references):

tracer.start_span('...')

Starting a child Span (see also start_child_span()):

6.3. Releases 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

opentracing-python, Release 1.2

tracer.start_span(
'...',
child_of=parent_span)

Starting a child Span in a more verbose way:

tracer.start_span(
'...',
references=[opentracing.child_of(parent_span)])

Parameters

• operation_name (str) – name of the operation represented by the new Span from
the perspective of the current service.

• child_of (Span or SpanContext) – (optional) a Span or SpanContext repre-
senting the parent in a REFERENCE_CHILD_OF reference. If specified, the references
parameter must be omitted.

• references (list of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation for detail).

• tags (dict) – an optional dictionary of Span tags. The caller gives up ownership of
that dictionary, because the Tracer may use it as-is to avoid extra data copying.

• start_time (float) – an explicit Span start time as a unix timestamp per time.
time()

• ignore_active_span (bool) – an explicit flag that ignores the current active Scope
and creates a root Span.

Return type Span

Returns an already-started Span instance.

Scope managers

class opentracing.ext.scope_manager.ThreadLocalScopeManager
ScopeManager implementation that stores the current active Scope using thread-local storage.

activate(span, finish_on_close)
Make a Span instance active.

Parameters

• span – the Span that should become active.

• finish_on_close – whether span should automatically be finished when Scope.
close() is called.

Returns a Scope instance to control the end of the active period for the Span. It is a program-
ming error to neglect to call Scope.close() on the returned instance.

active
Return the currently active Scope which can be used to access the currently active Scope.span.

Returns the Scope that is active, or None if not available.

class opentracing.ext.scope_manager.gevent.GeventScopeManager
ScopeManager implementation for gevent that stores the Scope in the current greenlet (gevent.
getcurrent()).

26 Chapter 6. Instrumentation Tests

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

opentracing-python, Release 1.2

Automatic Span propagation from parent greenlets to their children is not provided, which needs to be done
manually:

def child_greenlet(span):
activate the parent Span, but do not finish it upon
deactivation. That will be done by the parent greenlet.
with tracer.scope_manager.activate(span, finish_on_close=False):

with tracer.start_active_span('child') as scope:
...

def parent_greenlet():
with tracer.start_active_span('parent') as scope:

...
gevent.spawn(child_greenlet, span).join()
...

activate(span, finish_on_close)
Make a Span instance active.

Parameters

• span – the Span that should become active.

• finish_on_close – whether span should automatically be finished when Scope.
close() is called.

Returns a Scope instance to control the end of the active period for the Span. It is a program-
ming error to neglect to call Scope.close() on the returned instance.

active
Return the currently active Scope which can be used to access the currently active Scope.span.

Returns the Scope that is active, or None if not available.

class opentracing.ext.scope_manager.tornado.TornadoScopeManager
ScopeManager implementation for Tornado that stores the Scope using a custom StackContext, falling
back to thread-local storage if none was found.

Using it under tracer_stack_context() will also automatically propagate the active Span from parent
coroutines to their children:

@tornado.gen.coroutine
def child_coroutine():

No need to pass 'parent' and activate it here,
as it is automatically propagated.
with tracer.start_active_span('child') as scope:

...

@tornado.gen.coroutine
def parent_coroutine():

with tracer.start_active_span('parent') as scope:
...
yield child_coroutine()
...

with tracer_stack_context():
loop.add_callback(parent_coroutine)

Note: The current version does not support Span activation in children coroutines when the parent yields over
multiple of them, as the context is effectively shared by all, and the active Span state is messed up:

6.3. Releases 27

opentracing-python, Release 1.2

@tornado.gen.coroutine
def coroutine(input):

No span should be activated here.
The parent Span will remain active, though.
with tracer.start_span('child', child_of=tracer.active_span):

...

@tornado.gen.coroutine
def handle_request_wrapper():

res1 = corotuine('A')
res2 = corotuine('B')

yield [res1, res2]

activate(span, finish_on_close)
Make a Span instance active.

Parameters

• span – the Span that should become active.

• finish_on_close – whether span should automatically be finished when Scope.
close() is called.

If no tracer_stack_context() is detected, thread-local storage will be used to store the Scope.
Observe that in this case the active Span will not be automatically propagated to the child corotuines.

Returns a Scope instance to control the end of the active period for the Span. It is a program-
ming error to neglect to call Scope.close() on the returned instance.

active
Return the currently active Scope which can be used to access the currently active Scope.span.

Returns the Scope that is active, or None if not available.

opentracing.ext.scope_manager.tornado.tracer_stack_context()
Create a custom Tornado’s StackContext that allows TornadoScopeManager to store the active Span
in the thread-local request context.

Suppose you have a method handle_request(request) in the http server. Instead of calling it directly,
use a wrapper:

from opentracing.ext.scope_manager.tornado import tracer_stack_context

@tornado.gen.coroutine
def handle_request_wrapper(request, actual_handler, *args, **kwargs)

request_wrapper = TornadoRequestWrapper(request=request)
span = http_server.before_request(request=request_wrapper)

with tracer_stack_context():
with tracer.scope_manager.activate(span, True):

return actual_handler(*args, **kwargs)

Returns Return a custom StackContext that allows TornadoScopeManager to activate and
propagate Span instances.

28 Chapter 6. Instrumentation Tests

opentracing-python, Release 1.2

class opentracing.ext.scope_manager.asyncio.AsyncioScopeManager
ScopeManager implementation for asyncio that stores the Scope in the current Task (Task.
current_task()), falling back to thread-local storage if none was being executed.

Automatic Span propagation from parent coroutines to their children is not provided, which needs to be done
manually:

async def child_coroutine(span):
activate the parent Span, but do not finish it upon
deactivation. That will be done by the parent coroutine.
with tracer.scope_manager.activate(span, finish_on_close=False):

with tracer.start_active_span('child') as scope:
...

async def parent_coroutine():
with tracer.start_active_span('parent') as scope:

...
await child_coroutine(span)
...

activate(span, finish_on_close)
Make a Span instance active.

Parameters

• span – the Span that should become active.

• finish_on_close – whether span should automatically be finished when Scope.
close() is called.

If no Task is being executed, thread-local storage will be used to store the Scope.

Returns a Scope instance to control the end of the active period for the Span. It is a program-
ming error to neglect to call Scope.close() on the returned instance.

active
Return the currently active Scope which can be used to access the currently active Scope.span.

Returns the Scope that is active, or None if not available.

6.3.2 History

2.0.0rc2 (2018-04-09)

• Implement ScopeManager for in-process propagation.

1.3.0 (2018-01-14)

• Added sphinx-generated documentation.

• Remove ‘futures’ from install_requires (#62)

• Add a harness check for unicode keys and vals (#40)

• Have the harness try all tag value types (#39)

6.3. Releases 29

opentracing-python, Release 1.2

1.2.2 (2016-10-03)

• Fix KeyError when checking kwargs for optional values

1.2.1 (2016-09-22)

• Make Span.log(self, **kwargs) smarter

1.2.0 (2016-09-21)

• Add Span.log_kv and deprecate older logging methods

1.1.0 (2016-08-06)

• Move set/get_baggage back to Span; add SpanContext.baggage

• Raise exception on unknown format

2.0.0.dev3 (2016-07-26)

• Support SpanContext

2.0.0.dev1 (2016-07-12)

• Rename ChildOf/FollowsFrom to child_of/follows_from

• Rename span_context to referee in Reference

• Document expected behavior when referee=None

2.0.0.dev0 (2016-07-11)

• Support SpanContext (and real semvers)

1.0rc4 (2016-05-21)

• Add standard tags per http://opentracing.io/data-semantics/

1.0rc3 (2016-03-22)

• No changes yet

1.0rc3 (2016-03-22)

• Move to simpler carrier formats

1.0rc2 (2016-03-11)

• Remove the Injector/Extractor layer

30 Chapter 6. Instrumentation Tests

http://opentracing.io/data-semantics/

opentracing-python, Release 1.2

1.0rc1 (2016-02-24)

• Upgrade to 1.0 RC specification

0.6.3 (2016-01-16)

• Rename repository back to opentracing-python

0.6.2 (2016-01-15)

• Validate chaining of logging calls

0.6.1 (2016-01-09)

• Fix typo in the attributes API test

0.6.0 (2016-01-09)

• Change inheritance to match api-go: TraceContextSource extends codecs, Tracer extends TraceContextSource

• Create API harness

0.5.2 (2016-01-08)

• Update README and meta.

0.5.1 (2016-01-08)

• Prepare for PYPI publishing.

0.5.0 (2016-01-07)

• Remove debug flag

• Allow passing tags to start methods

• Add Span.add_tags() method

0.4.2 (2016-01-07)

• Add SPAN_KIND tag

0.4.0 (2016-01-06)

• Rename marshal -> encode

0.3.1 (2015-12-30)

• Fix std context implementation to refer to Trace Attributes instead of metadata

6.3. Releases 31

opentracing-python, Release 1.2

0.3.0 (2015-12-29)

• Rename trace tags to Trace Attributes. Rename RPC tags to PEER. Add README.

0.2.0 (2015-12-28)

• Export global tracer variable.

0.1.4 (2015-12-28)

• Rename RPC_SERVICE tag to make it symmetric

0.1.3 (2015-12-27)

• Allow repeated keys for span tags; add standard tag names for RPC

0.1.2 (2015-12-27)

• Move creation of child context to TraceContextSource

0.1.1 (2015-12-27)

• Add log methods

0.1.0 (2015-12-27)

• Initial public API

32 Chapter 6. Instrumentation Tests

Index

A
activate() (opentracing.ext.scope_manager.asyncio.AsyncioScopeManager

method), 29
activate() (opentracing.ext.scope_manager.gevent.GeventScopeManager

method), 27
activate() (opentracing.ext.scope_manager.ThreadLocalScopeManager

method), 26
activate() (opentracing.ext.scope_manager.tornado.TornadoScopeManager

method), 28
activate() (opentracing.ScopeManager method), 18
active (opentracing.ext.scope_manager.asyncio.AsyncioScopeManager

attribute), 29
active (opentracing.ext.scope_manager.gevent.GeventScopeManager

attribute), 27
active (opentracing.ext.scope_manager.ThreadLocalScopeManager

attribute), 26
active (opentracing.ext.scope_manager.tornado.TornadoScopeManager

attribute), 28
active (opentracing.ScopeManager attribute), 19
active_span (opentracing.Tracer attribute), 19
AsyncioScopeManager (class in opentrac-

ing.ext.scope_manager.asyncio), 28

B
baggage (opentracing.SpanContext attribute), 18
BINARY (opentracing.Format attribute), 22

C
child_of() (in module opentracing), 23
close() (opentracing.Scope method), 18
context (opentracing.Span attribute), 16

E
extract() (opentracing.mocktracer.MockTracer method),

23
extract() (opentracing.Tracer method), 19

F
finish() (opentracing.Span method), 16

finished_spans() (opentracing.mocktracer.MockTracer
method), 24

follows_from() (in module opentracing), 23
Format (class in opentracing), 22

G
get_baggage_item() (opentracing.Span method), 16
GeventScopeManager (class in opentrac-

ing.ext.scope_manager.gevent), 26

H
HTTP_HEADERS (opentracing.Format attribute), 22

I
inject() (opentracing.mocktracer.MockTracer method), 24
inject() (opentracing.Tracer method), 19
InvalidCarrierException (class in opentracing), 23

L
log() (opentracing.Span method), 16
log_event() (opentracing.Span method), 16
log_kv() (opentracing.Span method), 16

M
manager (opentracing.Scope attribute), 18
MockTracer (class in opentracing.mocktracer), 23

R
Reference (class in opentracing), 21
ReferenceType (class in opentracing), 21
register_propagator() (opentrac-

ing.mocktracer.MockTracer method), 24
reset() (opentracing.mocktracer.MockTracer method), 24

S
Scope (class in opentracing), 18
scope_manager (opentracing.Tracer attribute), 20
ScopeManager (class in opentracing), 18
set_baggage_item() (opentracing.Span method), 17

33

opentracing-python, Release 1.2

set_operation_name() (opentracing.Span method), 17
set_tag() (opentracing.Span method), 17
Span (class in opentracing), 16
span (opentracing.Scope attribute), 18
SpanContext (class in opentracing), 18
SpanContextCorruptedException (class in opentracing),

23
start_active_span() (opentracing.mocktracer.MockTracer

method), 24
start_active_span() (opentracing.Tracer method), 20
start_child_span() (in module opentracing), 22
start_span() (opentracing.mocktracer.MockTracer

method), 25
start_span() (opentracing.Tracer method), 20

T
TEXT_MAP (opentracing.Format attribute), 22
ThreadLocalScopeManager (class in opentrac-

ing.ext.scope_manager), 26
TornadoScopeManager (class in opentrac-

ing.ext.scope_manager.tornado), 27
Tracer (class in opentracing), 19
tracer (opentracing.Span attribute), 17
tracer_stack_context() (in module opentrac-

ing.ext.scope_manager.tornado), 28

U
UnsupportedFormatException (class in opentracing), 23

34 Index

	Required Reading
	Status
	Usage
	Inbound request

	Outbound request
	Scope and within-process propagation
	Scope managers

	Development
	Tests
	Testbed suite

	Instrumentation Tests
	Documentation
	LICENSE
	Releases

