

OpenTracing API for Python

[image: GitterChat] [https://gitter.im/opentracing/public] [image: BuildStatus] [https://travis-ci.org/opentracing/opentracing-python] [image: PyPI] [https://badge.fury.io/py/opentracing]

This library is a Python platform API for OpenTracing.

Required Reading

In order to understand the Python platform API, one must first be familiar with
the OpenTracing project [http://opentracing.io] and
terminology [http://opentracing.io/documentation/pages/spec.html] more
specifically.

Status

In the current version, opentracing-python provides only the API and a
basic no-op implementation that can be used by instrumentation libraries to
collect and propagate distributed tracing context.

Future versions will include a reference implementation utilizing an
abstract Recorder interface, as well as a
Zipkin [http://openzipkin.github.io]-compatible Tracer.

Usage

The work of instrumentation libraries generally consists of three steps:

	When a service receives a new request (over HTTP or some other protocol),
it uses OpenTracing’s inject/extract API to continue an active trace, creating a
Span object in the process. If the request does not contain an active trace,
the service starts a new trace and a new root Span.

	The service needs to store the current Span in some request-local storage,
(called Span activation) where it can be retrieved from when a child Span must
be created, e.g. in case of the service making an RPC to another service.

	When making outbound calls to another service, the current Span must be
retrieved from request-local storage, a child span must be created (e.g., by
using the start_child_span() helper), and that child span must be embedded
into the outbound request (e.g., using HTTP headers) via OpenTracing’s
inject/extract API.

Below are the code examples for the previously mentioned steps. Implementation
of request-local storage needed for step 2 is specific to the service and/or frameworks /
instrumentation libraries it is using, exposed as a ScopeManager child contained
as Tracer.scope_manager. See details below.

Inbound request

Somewhere in your server’s request handler code:

def handle_request(request):
 span = before_request(request, opentracing.tracer)
 # store span in some request-local storage using Tracer.scope_manager,
 # using the returned `Scope` as Context Manager to ensure
 # `Span` will be cleared and (in this case) `Span.finish()` be called.
 with tracer.scope_manager.activate(span, True) as scope:
 # actual business logic
 handle_request_for_real(request)

def before_request(request, tracer):
 span_context = tracer.extract(
 format=Format.HTTP_HEADERS,
 carrier=request.headers,
)
 span = tracer.start_span(
 operation_name=request.operation,
 child_of(span_context))
 span.set_tag('http.url', request.full_url)

 remote_ip = request.remote_ip
 if remote_ip:
 span.set_tag(tags.PEER_HOST_IPV4, remote_ip)

 caller_name = request.caller_name
 if caller_name:
 span.set_tag(tags.PEER_SERVICE, caller_name)

 remote_port = request.remote_port
 if remote_port:
 span.set_tag(tags.PEER_PORT, remote_port)

 return span

Outbound request

Somewhere in your service that’s about to make an outgoing call:

from opentracing.ext import tags
from opentracing.propagation import Format
from opentracing_instrumentation import request_context

create and serialize a child span and use it as context manager
with before_http_request(
 request=out_request,
 current_span_extractor=request_context.get_current_span):

 # actual call
 return urllib2.urlopen(request)

def before_http_request(request, current_span_extractor):
 op = request.operation
 parent_span = current_span_extractor()
 outbound_span = opentracing.tracer.start_span(
 operation_name=op,
 child_of=parent_span
)

 outbound_span.set_tag('http.url', request.full_url)
 service_name = request.service_name
 host, port = request.host_port
 if service_name:
 outbound_span.set_tag(tags.PEER_SERVICE, service_name)
 if host:
 outbound_span.set_tag(tags.PEER_HOST_IPV4, host)
 if port:
 outbound_span.set_tag(tags.PEER_PORT, port)

 http_header_carrier = {}
 opentracing.tracer.inject(
 span_context=outbound_span,
 format=Format.HTTP_HEADERS,
 carrier=http_header_carrier)

 for key, value in http_header_carrier.iteritems():
 request.add_header(key, value)

 return outbound_span

Scope and within-process propagation

For getting/setting the current active Span in the used request-local storage,
OpenTracing requires that every Tracer contains a ScopeManager that grants
access to the active Span through a Scope. Any Span may be transferred to
another task or thread, but not Scope.

Access to the active span is straightforward.
scope = tracer.scope_manager.active()
if scope is not None:
 scope.span.set_tag('...', '...')

The common case starts a Scope that’s automatically registered for intra-process
propagation via ScopeManager.

Note that start_active_span('...') automatically finishes the span on Scope.close()
(start_active_span('...', finish_on_close=False) does not finish it, in contrast).

Manual activation of the Span.
span = tracer.start_span(operation_name='someWork')
with tracer.scope_manager.activate(span, True) as scope:
 # Do things.

Automatic activation of the Span.
finish_on_close is a required parameter.
with tracer.start_active_span('someWork', finish_on_close=True) as scope:
 # Do things.

Handling done through a try construct:
span = tracer.start_span(operation_name='someWork')
scope = tracer.scope_manager.activate(span, True)
try:
 # Do things.
except Exception as e:
 scope.set_tag('error', '...')
finally:
 scope.finish()

If there is a Scope, it will act as the parent to any newly started Span unless
the programmer passes ignore_active_span=True at start_span()/start_active_span()
time or specified parent context explicitly:

scope = tracer.start_active_span('someWork', ignore_active_span=True)

Each service/framework ought to provide a specific ScopeManager implementation
that relies on their own request-local storage (thread-local storage, or coroutine-based storage
for asynchronous frameworks, for example).

Scope managers

This project includes a set of ScopeManager implementations under the opentracing.ext.scope_manager submodule, which can be imported on demand:

from opentracing.ext.scope_manager import ThreadLocalScopeManager

There exist implementations for thread-local (the default), gevent, Tornado and asyncio:

from opentracing.ext.scope_manager.gevent import GeventScopeManager # requires gevent
from opentracing.ext.scope_manager.tornado import TornadoScopeManager # requires Tornado
from opentracing.ext.scope_manager.asyncio import AsyncioScopeManager # requires Python 3.4 or newer.

Development

Tests

virtualenv env
. ./env/bin/activate
make bootstrap
make test

Testbed suite

A testbed suite designed to test API changes and experimental features is included under the testbed directory. For more information, see the Testbed README.

Instrumentation Tests

This project has a working design of interfaces for the OpenTracing API. There is a MockTracer to
facilitate unit-testing of OpenTracing Python instrumentation.

from opentracing.mocktracer import MockTracer

tracer = MockTracer()
with tracer.start_span('someWork') as span:
 pass

spans = tracer.finished_spans()
someWorkSpan = spans[0]

Documentation

virtualenv env
. ./env/bin/activate
make bootstrap
make docs

The documentation is written to docs/_build/html.

LICENSE

[MIT License](./LICENSE).

Releases

Before new release, add a summary of changes since last version to CHANGELOG.rst

pip install zest.releaser[recommended]
prerelease
release
git push origin master --follow-tags
python setup.py sdist upload -r pypi upload_docs -r pypi
postrelease
git push

Python API

Classes

	
class opentracing.Span(tracer, context)

	Span represents a unit of work executed on behalf of a trace. Examples of
spans include a remote procedure call, or a in-process method call to a
sub-component. Every span in a trace may have zero or more causal parents,
and these relationships transitively form a DAG. It is common for spans to
have at most one parent, and thus most traces are merely tree structures.

Span implements a context manager API that allows the following usage:

with tracer.start_span(operation_name='go_fishing') as span:
 call_some_service()

In the context manager syntax it’s not necessary to call
Span.finish()

	
context

	Provides access to the SpanContext associated with this
Span.

The SpanContext contains state that propagates from
Span to Span in a larger trace.

	Return type

	SpanContext

	Returns

	the SpanContext associated with this Span.

	
finish(finish_time=None)

	Indicates that the work represented by this Span has completed or
terminated.

With the exception of the Span.context property, the semantics
of all other Span methods are undefined after
Span.finish() has been invoked.

	Parameters

	finish_time (float [https://docs.python.org/3/library/functions.html#float]) – an explicit Span finish timestamp as a
unix timestamp per time.time()

	
get_baggage_item(key)

	Retrieves value of the baggage item with the given key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – key of the baggage item

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	value of the baggage item with given key, or None.

	
log(**kwargs)

	DEPRECATED

	
log_event(event, payload=None)

	DEPRECATED

	
log_kv(key_values, timestamp=None)

	Adds a log record to the Span.

For example:

span.log_kv({
 "event": "time to first byte",
 "packet.size": packet.size()})

span.log_kv({"event": "two minutes ago"}, time.time() - 120)

	Parameters

	
	key_values (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict of string keys and values of any type

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – A unix timestamp per time.time(); current
time if None

	Return type

	Span

	Returns

	the Span itself, for call chaining.

	
set_baggage_item(key, value)

	Stores a Baggage item in the Span as a key/value pair.

Enables powerful distributed context propagation functionality where
arbitrary application data can be carried along the full path of
request execution throughout the system.

Note 1: Baggage is only propagated to the future (recursive) children
of this Span.

Note 2: Baggage is sent in-band with every subsequent local and remote
calls, so this feature must be used with care.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Baggage item key

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Baggage item value

	Return type

	Span

	Returns

	itself, for chaining the calls.

	
set_operation_name(operation_name)

	Changes the operation name.

	Parameters

	operation_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the new operation name

	Return type

	Span

	Returns

	the Span itself, for call chaining.

	
set_tag(key, value)

	Attaches a key/value pair to the Span.

The value must be a string, a bool, or a numeric type.

If the user calls set_tag multiple times for the same key,
the behavior of the Tracer is undefined, i.e. it is
implementation specific whether the Tracer will retain the
first value, or the last value, or pick one randomly, or even keep all
of them.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – key or name of the tag. Must be a string.

	value (string or bool [https://docs.python.org/3/library/functions.html#bool] or int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – value of the tag.

	Return type

	Span

	Returns

	the Span itself, for call chaining.

	
tracer

	Provides access to the Tracer that created this
Span.

	Return type

	Tracer

	Returns

	the Tracer that created this Span.

	
class opentracing.SpanContext

	SpanContext represents Span state that must propagate to
descendant Spans and across process boundaries.

SpanContext is logically divided into two pieces: the user-level “Baggage”
(see Span.set_baggage_item() and Span.get_baggage_item()) that
propagates across Span boundaries and any
tracer-implementation-specific fields that are needed to identify or
otherwise contextualize the associated Span (e.g., a (trace_id,
span_id, sampled) tuple).

	
baggage

	Return baggage associated with this SpanContext.
If no baggage has been added to the Span, returns an empty
dict.

The caller must not modify the returned dictionary.

See also: Span.set_baggage_item() /
Span.get_baggage_item()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns

	baggage associated with this SpanContext or {}.

	
class opentracing.Scope(manager, span)

	A scope formalizes the activation and deactivation of a Span,
usually from a CPU standpoint. Many times a Span will be extant
(in that Span.finish() has not been called) despite being in a
non-runnable state from a CPU/scheduler standpoint. For instance, a
Span representing the client side of an RPC will be unfinished but
blocked on IO while the RPC is still outstanding. A scope defines when a
given Span is scheduled and on the path.

	Parameters

	
	manager (ScopeManager) – the ScopeManager that created this Scope.

	span (Span) – the Span used for this Scope.

	
close()

	Marks the end of the active period for this Scope, updating
ScopeManager.active in the process.

NOTE: Calling this method more than once on a single Scope
leads to undefined behavior.

	
manager

	Returns the ScopeManager that created this Scope.

	Return type

	ScopeManager

	
span

	Returns the Span wrapped by this Scope.

	Return type

	Span

	
class opentracing.ScopeManager

	The ScopeManager interface abstracts both the activation of
a Span and access to an active Span/Scope.

	
activate(span, finish_on_close)

	Makes a Span active.

	Parameters

	
	span – the Span that should become active.

	finish_on_close – whether Span should be automatically
finished when Scope.close() is called.

	Return type

	Scope

	Returns

	a Scope to control the end of the active period for
span. It is a programming error to neglect to call
Scope.close() on the returned instance.

	
active

	Returns the currently active Scope which can be used to access the
currently active Scope.span.

If there is a non-null Scope, its wrapped Span
becomes an implicit parent of any newly-created Span at
Tracer.start_active_span() time.

	Return type

	Scope

	Returns

	the Scope that is active, or None if not
available.

	
class opentracing.Tracer(scope_manager=None)

	Tracer is the entry point API between instrumentation code and the
tracing implementation.

This implementation both defines the public Tracer API, and provides
a default no-op behavior.

	
active_span

	Provides access to the the active Span. This is a shorthand for
Tracer.scope_manager.active.span, and None will be
returned if Scope.span is None.

	Return type

	Span

	Returns

	the active Span.

	
extract(format, carrier)

	Returns a SpanContext instance extracted from a carrier of the
given format, or None if no such SpanContext could be
found.

The type of carrier is determined by format. See the
Format class/namespace for the built-in OpenTracing formats.

Implementations must raise UnsupportedFormatException if
format is unknown or disallowed.

Implementations may raise InvalidCarrierException,
SpanContextCorruptedException, or implementation-specific errors
if there are problems with carrier.

	Parameters

	
	format – a python object instance that represents a given
carrier format. format may be of any type, and format equality
is defined by python == equality.

	carrier – the format-specific carrier object to extract from

	Return type

	SpanContext

	Returns

	a SpanContext extracted from carrier or None if
no such SpanContext could be found.

	
inject(span_context, format, carrier)

	Injects span_context into carrier.

The type of carrier is determined by format. See the
Format class/namespace for the built-in OpenTracing formats.

Implementations must raise UnsupportedFormatException if
format is unknown or disallowed.

	Parameters

	
	span_context (SpanContext) – the SpanContext instance to inject

	format (Format) – a python object instance that represents a given
carrier format. format may be of any type, and format equality
is defined by python == equality.

	carrier – the format-specific carrier object to inject into

	
scope_manager

	Provides access to the current ScopeManager.

	Return type

	ScopeManager

	
start_active_span(operation_name, child_of=None, references=None, tags=None, start_time=None, ignore_active_span=False, finish_on_close=True)

	Returns a newly started and activated Scope.

The returned Scope supports with-statement contexts. For
example:

with tracer.start_active_span('...') as scope:
 scope.span.set_tag('http.method', 'GET')
 do_some_work()
Span.finish() is called as part of scope deactivation through
the with statement.

It’s also possible to not finish the Span when the
Scope context expires:

with tracer.start_active_span('...',
 finish_on_close=False) as scope:
 scope.span.set_tag('http.method', 'GET')
 do_some_work()
Span.finish() is not called as part of Scope deactivation as
`finish_on_close` is `False`.

	Parameters

	
	operation_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the operation represented by the new
Span from the perspective of the current service.

	child_of (Span or SpanContext) – (optional) a Span or SpanContext
instance representing the parent in a REFERENCE_CHILD_OF reference.
If specified, the references parameter must be omitted.

	references (list [https://docs.python.org/3/library/stdtypes.html#list] of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation
for detail).

	tags (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an optional dictionary of Span tags. The caller
gives up ownership of that dictionary, because the Tracer
may use it as-is to avoid extra data copying.

	start_time (float [https://docs.python.org/3/library/functions.html#float]) – an explicit Span start time as a unix
timestamp per time.time().

	ignore_active_span (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) an explicit flag that ignores
the current active Scope and creates a root Span.

	finish_on_close (bool [https://docs.python.org/3/library/functions.html#bool]) – whether Span should automatically be
finished when Scope.close() is called.

	Return type

	Scope

	Returns

	a Scope, already registered via the
ScopeManager.

	
start_span(operation_name=None, child_of=None, references=None, tags=None, start_time=None, ignore_active_span=False)

	Starts and returns a new Span representing a unit of work.

Starting a root Span (a Span with no causal
references):

tracer.start_span('...')

Starting a child Span (see also start_child_span()):

tracer.start_span(
 '...',
 child_of=parent_span)

Starting a child Span in a more verbose way:

tracer.start_span(
 '...',
 references=[opentracing.child_of(parent_span)])

	Parameters

	
	operation_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the operation represented by the new
Span from the perspective of the current service.

	child_of (Span or SpanContext) – (optional) a Span or SpanContext
representing the parent in a REFERENCE_CHILD_OF reference. If
specified, the references parameter must be omitted.

	references (list [https://docs.python.org/3/library/stdtypes.html#list] of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation
for detail).

	tags (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an optional dictionary of Span tags. The caller
gives up ownership of that dictionary, because the Tracer
may use it as-is to avoid extra data copying.

	start_time (float [https://docs.python.org/3/library/functions.html#float]) – an explicit Span start time as a unix timestamp per
time.time()

	ignore_active_span (bool [https://docs.python.org/3/library/functions.html#bool]) – an explicit flag that ignores the current
active Scope and creates a root Span.

	Return type

	Span

	Returns

	an already-started Span instance.

	
class opentracing.ReferenceType

	A namespace for OpenTracing reference types.

See http://opentracing.io/spec for more detail about references,
reference types, and CHILD_OF and FOLLOWS_FROM in particular.

	
class opentracing.Reference

	A Reference pairs a reference type with a referenced SpanContext.

References are used by Tracer.start_span() to describe the
relationships between Spans.

Tracer implementations must ignore references where
referenced_context is None. This behavior allows for simpler code when
an inbound RPC request contains no tracing information and as a result
Tracer.extract() returns None:

parent_ref = tracer.extract(opentracing.HTTP_HEADERS, request.headers)
span = tracer.start_span(
 'operation', references=child_of(parent_ref)
)

See child_of() and follows_from() helpers for creating these
references.

	
class opentracing.Format

	A namespace for builtin carrier formats.

These static constants are intended for use in the Tracer.inject()
and Tracer.extract() methods. E.g.:

tracer.inject(span.context, Format.BINARY, binary_carrier)

	
BINARY = 'binary'

	The BINARY format represents SpanContexts in an opaque bytearray carrier.

For both Tracer.inject() and Tracer.extract() the carrier
should be a bytearray instance. Tracer.inject() must append to the
bytearray carrier (rather than replace its contents).

	
HTTP_HEADERS = 'http_headers'

	The HTTP_HEADERS format represents SpanContexts in a python
dict mapping from character-restricted strings to strings.

Keys and values in the HTTP_HEADERS carrier must be suitable for use as
HTTP headers (without modification or further escaping). That is, the
keys have a greatly restricted character set, casing for the keys may not
be preserved by various intermediaries, and the values should be
URL-escaped.

NOTE: The HTTP_HEADERS carrier dict may contain unrelated data (e.g.,
arbitrary gRPC metadata). As such, the Tracer implementation
should use a prefix or other convention to distinguish tracer-specific
key:value pairs.

	
TEXT_MAP = 'text_map'

	The TEXT_MAP format represents SpanContexts in a python dict
mapping from strings to strings.

Both the keys and the values have unrestricted character sets (unlike the
HTTP_HEADERS format).

NOTE: The TEXT_MAP carrier dict may contain unrelated data (e.g.,
arbitrary gRPC metadata). As such, the Tracer implementation
should use a prefix or other convention to distinguish tracer-specific
key:value pairs.

Utility Functions

	
opentracing.start_child_span(parent_span, operation_name, tags=None, start_time=None)

	A shorthand method that starts a child_of Span for a given
parent Span.

Equivalent to calling:

parent_span.tracer().start_span(
 operation_name,
 references=opentracing.child_of(parent_span.context),
 tags=tags,
 start_time=start_time)

	Parameters

	
	parent_span (Span) – the Span which will act as the parent in the
returned Spans child_of reference.

	operation_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the operation name for the child Span
instance

	tags (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – optional dict of Span tags. The caller gives up
ownership of that dict, because the Tracer may use it as-is to
avoid extra data copying.

	start_time (float [https://docs.python.org/3/library/functions.html#float]) – an explicit Span start time as a unix timestamp
per time.time().

	Return type

	Span

	Returns

	an already-started Span instance.

	
opentracing.child_of(referenced_context=None)

	child_of is a helper that creates CHILD_OF References.

	Parameters

	referenced_context (SpanContext) – the (causal parent) SpanContext to
reference. If None is passed, this reference must be ignored by
the Tracer.

	Return type

	Reference

	Returns

	A reference suitable for Tracer.start_span(...,
references=...)

	
opentracing.follows_from(referenced_context=None)

	follows_from is a helper that creates FOLLOWS_FROM References.

	Parameters

	referenced_context (SpanContext) – the (causal parent) SpanContext to
reference. If None is passed, this reference must be ignored by the
Tracer.

	Return type

	Reference

	Returns

	A Reference suitable for Tracer.start_span(...,
references=...)

Exceptions

	
class opentracing.InvalidCarrierException

	InvalidCarrierException should be used when the provided carrier
instance does not match what the format argument requires.

See Tracer.inject() and Tracer.extract().

	
class opentracing.SpanContextCorruptedException

	SpanContextCorruptedException should be used when the underlying
SpanContext state is seemingly present but not well-formed.

See Tracer.inject() and Tracer.extract().

	
class opentracing.UnsupportedFormatException

	UnsupportedFormatException should be used when the provided format
value is unknown or disallowed by the Tracer.

See Tracer.inject() and Tracer.extract().

MockTracer

	
class opentracing.mocktracer.MockTracer(scope_manager=None)

	MockTracer makes it easy to test the semantics of OpenTracing
instrumentation.

By using a MockTracer as a Tracer implementation
for tests, a developer can assert that Span
properties and relationships with other
Spans are defined as expected by instrumentation code.

By default, MockTracer registers propagators for Format.TEXT_MAP,
Format.HTTP_HEADERS and Format.BINARY. The user should
call register_propagator() for each additional inject/extract
format.

	
extract(format, carrier)

	Returns a SpanContext instance extracted from a carrier of the
given format, or None if no such SpanContext could be
found.

The type of carrier is determined by format. See the
Format class/namespace for the built-in OpenTracing formats.

Implementations must raise UnsupportedFormatException if
format is unknown or disallowed.

Implementations may raise InvalidCarrierException,
SpanContextCorruptedException, or implementation-specific errors
if there are problems with carrier.

	Parameters

	
	format – a python object instance that represents a given
carrier format. format may be of any type, and format equality
is defined by python == equality.

	carrier – the format-specific carrier object to extract from

	Return type

	SpanContext

	Returns

	a SpanContext extracted from carrier or None if
no such SpanContext could be found.

	
finished_spans()

	Return a copy of all finished Spans started by this MockTracer
(since construction or the last call to reset())

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Returns

	a copy of the finished Spans.

	
inject(span_context, format, carrier)

	Injects span_context into carrier.

The type of carrier is determined by format. See the
Format class/namespace for the built-in OpenTracing formats.

Implementations must raise UnsupportedFormatException if
format is unknown or disallowed.

	Parameters

	
	span_context (SpanContext) – the SpanContext instance to inject

	format (Format) – a python object instance that represents a given
carrier format. format may be of any type, and format equality
is defined by python == equality.

	carrier – the format-specific carrier object to inject into

	
register_propagator(format, propagator)

	Register a propagator with this MockTracer.

	Parameters

	
	format (string) – a Format
identifier like TEXT_MAP

	propagator (Propagator) – a Propagator instance to handle
inject/extract calls involving format

	
reset()

	Clear the finished Spans queue.

Note that this does not have any effect on Spans created by
MockTracer that have not finished yet; those
will still be enqueued in finished_spans()
when they finish().

	
start_active_span(operation_name, child_of=None, references=None, tags=None, start_time=None, ignore_active_span=False, finish_on_close=True)

	Returns a newly started and activated Scope.

The returned Scope supports with-statement contexts. For
example:

with tracer.start_active_span('...') as scope:
 scope.span.set_tag('http.method', 'GET')
 do_some_work()
Span.finish() is called as part of scope deactivation through
the with statement.

It’s also possible to not finish the Span when the
Scope context expires:

with tracer.start_active_span('...',
 finish_on_close=False) as scope:
 scope.span.set_tag('http.method', 'GET')
 do_some_work()
Span.finish() is not called as part of Scope deactivation as
`finish_on_close` is `False`.

	Parameters

	
	operation_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the operation represented by the new
Span from the perspective of the current service.

	child_of (Span or SpanContext) – (optional) a Span or SpanContext
instance representing the parent in a REFERENCE_CHILD_OF reference.
If specified, the references parameter must be omitted.

	references (list [https://docs.python.org/3/library/stdtypes.html#list] of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation
for detail).

	tags (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an optional dictionary of Span tags. The caller
gives up ownership of that dictionary, because the Tracer
may use it as-is to avoid extra data copying.

	start_time (float [https://docs.python.org/3/library/functions.html#float]) – an explicit Span start time as a unix
timestamp per time.time().

	ignore_active_span (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) an explicit flag that ignores
the current active Scope and creates a root Span.

	finish_on_close (bool [https://docs.python.org/3/library/functions.html#bool]) – whether Span should automatically be
finished when Scope.close() is called.

	Return type

	Scope

	Returns

	a Scope, already registered via the
ScopeManager.

	
start_span(operation_name=None, child_of=None, references=None, tags=None, start_time=None, ignore_active_span=False)

	Starts and returns a new Span representing a unit of work.

Starting a root Span (a Span with no causal
references):

tracer.start_span('...')

Starting a child Span (see also start_child_span()):

tracer.start_span(
 '...',
 child_of=parent_span)

Starting a child Span in a more verbose way:

tracer.start_span(
 '...',
 references=[opentracing.child_of(parent_span)])

	Parameters

	
	operation_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the operation represented by the new
Span from the perspective of the current service.

	child_of (Span or SpanContext) – (optional) a Span or SpanContext
representing the parent in a REFERENCE_CHILD_OF reference. If
specified, the references parameter must be omitted.

	references (list [https://docs.python.org/3/library/stdtypes.html#list] of Reference) – (optional) references that identify one or more
parent SpanContexts. (See the Reference documentation
for detail).

	tags (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – an optional dictionary of Span tags. The caller
gives up ownership of that dictionary, because the Tracer
may use it as-is to avoid extra data copying.

	start_time (float [https://docs.python.org/3/library/functions.html#float]) – an explicit Span start time as a unix timestamp per
time.time()

	ignore_active_span (bool [https://docs.python.org/3/library/functions.html#bool]) – an explicit flag that ignores the current
active Scope and creates a root Span.

	Return type

	Span

	Returns

	an already-started Span instance.

Scope managers

	
class opentracing.ext.scope_manager.ThreadLocalScopeManager

	ScopeManager implementation that stores the
current active Scope using thread-local storage.

	
activate(span, finish_on_close)

	Make a Span instance active.

	Parameters

	
	span – the Span that should become active.

	finish_on_close – whether span should automatically be
finished when Scope.close() is called.

	Returns

	a Scope instance to control the end
of the active period for the Span.
It is a programming error to neglect to call Scope.close()
on the returned instance.

	
active

	Return the currently active Scope which
can be used to access the currently active
Scope.span.

	Returns

	the Scope that is active,
or None if not available.

	
class opentracing.ext.scope_manager.gevent.GeventScopeManager

	ScopeManager implementation for gevent
that stores the Scope in the current greenlet
(gevent.getcurrent()).

Automatic Span propagation from parent greenlets to
their children is not provided, which needs to be
done manually:

def child_greenlet(span):
 # activate the parent Span, but do not finish it upon
 # deactivation. That will be done by the parent greenlet.
 with tracer.scope_manager.activate(span, finish_on_close=False):
 with tracer.start_active_span('child') as scope:
 ...

def parent_greenlet():
 with tracer.start_active_span('parent') as scope:
 ...
 gevent.spawn(child_greenlet, span).join()
 ...

	
activate(span, finish_on_close)

	Make a Span instance active.

	Parameters

	
	span – the Span that should become active.

	finish_on_close – whether span should automatically be
finished when Scope.close() is called.

	Returns

	a Scope instance to control the end
of the active period for the Span.
It is a programming error to neglect to call Scope.close()
on the returned instance.

	
active

	Return the currently active Scope which
can be used to access the currently active
Scope.span.

	Returns

	the Scope that is active,
or None if not available.

	
class opentracing.ext.scope_manager.tornado.TornadoScopeManager

	ScopeManager implementation for Tornado
that stores the Scope using a custom
StackContext, falling back to thread-local storage if
none was found.

Using it under tracer_stack_context() will
also automatically propagate the active Span
from parent coroutines to their children:

@tornado.gen.coroutine
def child_coroutine():
 # No need to pass 'parent' and activate it here,
 # as it is automatically propagated.
 with tracer.start_active_span('child') as scope:
 ...

@tornado.gen.coroutine
def parent_coroutine():
 with tracer.start_active_span('parent') as scope:
 ...
 yield child_coroutine()
 ...

with tracer_stack_context():
 loop.add_callback(parent_coroutine)

Note

The current version does not support Span
activation in children coroutines when the parent yields over
multiple of them, as the context is effectively shared by all,
and the active Span state is messed up:

@tornado.gen.coroutine
def coroutine(input):
 # No span should be activated here.
 # The parent Span will remain active, though.
 with tracer.start_span('child', child_of=tracer.active_span):
 ...

@tornado.gen.coroutine
def handle_request_wrapper():
 res1 = corotuine('A')
 res2 = corotuine('B')

 yield [res1, res2]

	
activate(span, finish_on_close)

	Make a Span instance active.

	Parameters

	
	span – the Span that should become active.

	finish_on_close – whether span should automatically be
finished when Scope.close() is called.

If no tracer_stack_context() is detected, thread-local
storage will be used to store the Scope.
Observe that in this case the active Span
will not be automatically propagated to the child corotuines.

	Returns

	a Scope instance to control the end
of the active period for the Span.
It is a programming error to neglect to call Scope.close()
on the returned instance.

	
active

	Return the currently active Scope which
can be used to access the currently active
Scope.span.

	Returns

	the Scope that is active,
or None if not available.

	
opentracing.ext.scope_manager.tornado.tracer_stack_context()

	Create a custom Tornado’s StackContext that allows
TornadoScopeManager to store the active
Span in the thread-local request context.

Suppose you have a method handle_request(request) in the
http server. Instead of calling it directly, use a wrapper:

from opentracing.ext.scope_manager.tornado import tracer_stack_context

@tornado.gen.coroutine
def handle_request_wrapper(request, actual_handler, *args, **kwargs)

 request_wrapper = TornadoRequestWrapper(request=request)
 span = http_server.before_request(request=request_wrapper)

 with tracer_stack_context():
 with tracer.scope_manager.activate(span, True):
 return actual_handler(*args, **kwargs)

	Returns

	Return a custom StackContext that allows
TornadoScopeManager to activate and propagate
Span instances.

	
class opentracing.ext.scope_manager.asyncio.AsyncioScopeManager

	ScopeManager implementation for asyncio
that stores the Scope in the current
Task (Task.current_task()), falling back to
thread-local storage if none was being executed.

Automatic Span propagation from
parent coroutines to their children is not provided, which needs to be
done manually:

async def child_coroutine(span):
 # activate the parent Span, but do not finish it upon
 # deactivation. That will be done by the parent coroutine.
 with tracer.scope_manager.activate(span, finish_on_close=False):
 with tracer.start_active_span('child') as scope:
 ...

async def parent_coroutine():
 with tracer.start_active_span('parent') as scope:
 ...
 await child_coroutine(span)
 ...

	
activate(span, finish_on_close)

	Make a Span instance active.

	Parameters

	
	span – the Span that should become active.

	finish_on_close – whether span should automatically be
finished when Scope.close() is called.

If no Task is being executed, thread-local
storage will be used to store the Scope.

	Returns

	a Scope instance to control the end
of the active period for the Span.
It is a programming error to neglect to call Scope.close()
on the returned instance.

	
active

	Return the currently active Scope which
can be used to access the currently active
Scope.span.

	Returns

	the Scope that is active,
or None if not available.

History

2.0.0rc2 (2018-04-09)

	Implement ScopeManager for in-process propagation.

1.3.0 (2018-01-14)

	Added sphinx-generated documentation.

	Remove ‘futures’ from install_requires (#62)

	Add a harness check for unicode keys and vals (#40)

	Have the harness try all tag value types (#39)

1.2.2 (2016-10-03)

	Fix KeyError when checking kwargs for optional values

1.2.1 (2016-09-22)

	Make Span.log(self, **kwargs) smarter

1.2.0 (2016-09-21)

	Add Span.log_kv and deprecate older logging methods

1.1.0 (2016-08-06)

	Move set/get_baggage back to Span; add SpanContext.baggage

	Raise exception on unknown format

2.0.0.dev3 (2016-07-26)

	Support SpanContext

2.0.0.dev1 (2016-07-12)

	Rename ChildOf/FollowsFrom to child_of/follows_from

	Rename span_context to referee in Reference

	Document expected behavior when referee=None

2.0.0.dev0 (2016-07-11)

	Support SpanContext (and real semvers)

1.0rc4 (2016-05-21)

	Add standard tags per http://opentracing.io/data-semantics/

1.0rc3 (2016-03-22)

	No changes yet

1.0rc3 (2016-03-22)

	Move to simpler carrier formats

1.0rc2 (2016-03-11)

	Remove the Injector/Extractor layer

1.0rc1 (2016-02-24)

	Upgrade to 1.0 RC specification

0.6.3 (2016-01-16)

	Rename repository back to opentracing-python

0.6.2 (2016-01-15)

	Validate chaining of logging calls

0.6.1 (2016-01-09)

	Fix typo in the attributes API test

0.6.0 (2016-01-09)

	Change inheritance to match api-go: TraceContextSource extends codecs,
Tracer extends TraceContextSource

	Create API harness

0.5.2 (2016-01-08)

	Update README and meta.

0.5.1 (2016-01-08)

	Prepare for PYPI publishing.

0.5.0 (2016-01-07)

	Remove debug flag

	Allow passing tags to start methods

	Add Span.add_tags() method

0.4.2 (2016-01-07)

	Add SPAN_KIND tag

0.4.0 (2016-01-06)

	Rename marshal -> encode

0.3.1 (2015-12-30)

	Fix std context implementation to refer to Trace Attributes instead of metadata

0.3.0 (2015-12-29)

	Rename trace tags to Trace Attributes. Rename RPC tags to PEER. Add README.

0.2.0 (2015-12-28)

	Export global tracer variable.

0.1.4 (2015-12-28)

	Rename RPC_SERVICE tag to make it symmetric

0.1.3 (2015-12-27)

	Allow repeated keys for span tags; add standard tag names for RPC

0.1.2 (2015-12-27)

	Move creation of child context to TraceContextSource

0.1.1 (2015-12-27)

	Add log methods

0.1.0 (2015-12-27)

	Initial public API

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | R
 | S
 | T
 | U

A

 	
 	activate() (opentracing.ext.scope_manager.asyncio.AsyncioScopeManager method)

 	(opentracing.ScopeManager method)

 	(opentracing.ext.scope_manager.ThreadLocalScopeManager method)

 	(opentracing.ext.scope_manager.gevent.GeventScopeManager method)

 	(opentracing.ext.scope_manager.tornado.TornadoScopeManager method)

 	active (opentracing.ext.scope_manager.asyncio.AsyncioScopeManager attribute)

 	(opentracing.ScopeManager attribute)

 	(opentracing.ext.scope_manager.ThreadLocalScopeManager attribute)

 	(opentracing.ext.scope_manager.gevent.GeventScopeManager attribute)

 	(opentracing.ext.scope_manager.tornado.TornadoScopeManager attribute)

 	
 	active_span (opentracing.Tracer attribute)

 	AsyncioScopeManager (class in opentracing.ext.scope_manager.asyncio)

B

 	
 	baggage (opentracing.SpanContext attribute)

 	
 	BINARY (opentracing.Format attribute)

C

 	
 	child_of() (in module opentracing)

 	
 	close() (opentracing.Scope method)

 	context (opentracing.Span attribute)

E

 	
 	extract() (opentracing.mocktracer.MockTracer method)

 	(opentracing.Tracer method)

F

 	
 	finish() (opentracing.Span method)

 	finished_spans() (opentracing.mocktracer.MockTracer method)

 	
 	follows_from() (in module opentracing)

 	Format (class in opentracing)

G

 	
 	get_baggage_item() (opentracing.Span method)

 	
 	GeventScopeManager (class in opentracing.ext.scope_manager.gevent)

H

 	
 	HTTP_HEADERS (opentracing.Format attribute)

I

 	
 	inject() (opentracing.mocktracer.MockTracer method)

 	(opentracing.Tracer method)

 	
 	InvalidCarrierException (class in opentracing)

L

 	
 	log() (opentracing.Span method)

 	
 	log_event() (opentracing.Span method)

 	log_kv() (opentracing.Span method)

M

 	
 	manager (opentracing.Scope attribute)

 	
 	MockTracer (class in opentracing.mocktracer)

R

 	
 	Reference (class in opentracing)

 	ReferenceType (class in opentracing)

 	
 	register_propagator() (opentracing.mocktracer.MockTracer method)

 	reset() (opentracing.mocktracer.MockTracer method)

S

 	
 	Scope (class in opentracing)

 	scope_manager (opentracing.Tracer attribute)

 	ScopeManager (class in opentracing)

 	set_baggage_item() (opentracing.Span method)

 	set_operation_name() (opentracing.Span method)

 	set_tag() (opentracing.Span method)

 	Span (class in opentracing)

 	
 	span (opentracing.Scope attribute)

 	SpanContext (class in opentracing)

 	SpanContextCorruptedException (class in opentracing)

 	start_active_span() (opentracing.mocktracer.MockTracer method)

 	(opentracing.Tracer method)

 	start_child_span() (in module opentracing)

 	start_span() (opentracing.mocktracer.MockTracer method)

 	(opentracing.Tracer method)

T

 	
 	TEXT_MAP (opentracing.Format attribute)

 	ThreadLocalScopeManager (class in opentracing.ext.scope_manager)

 	TornadoScopeManager (class in opentracing.ext.scope_manager.tornado)

 	
 	Tracer (class in opentracing)

 	tracer (opentracing.Span attribute)

 	tracer_stack_context() (in module opentracing.ext.scope_manager.tornado)

U

 	
 	UnsupportedFormatException (class in opentracing)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 OpenTracing API for Python

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

