

OpenTracing API for Python

[image: GitterChat] [https://gitter.im/opentracing/public] [image: BuildStatus] [https://travis-ci.org/opentracing/opentracing-python] [image: PyPI] [https://badge.fury.io/py/opentracing]

This library is a Python platform API for OpenTracing.

Required Reading

In order to understand the Python platform API, one must first be familiar with
the OpenTracing project [http://opentracing.io] and
terminology [http://opentracing.io/documentation/pages/spec.html] more
specifically.

Status

In the current version, opentracing-python provides only the API and a
basic no-op implementation that can be used by instrumentation libraries to
collect and propagate distributed tracing context.

Future versions will include a reference implementation utilizing an
abstract Recorder interface, as well as a
Zipkin [http://openzipkin.github.io]-compatible Tracer.

Usage

The work of instrumentation libraries generally consists of three steps:

	When a service receives a new request (over HTTP or some other protocol),
it uses OpenTracing’s inject/extract API to continue an active trace, creating a
Span object in the process. If the request does not contain an active trace,
the service starts a new trace and a new root Span.

	The service needs to store the current Span in some request-local storage,
where it can be retrieved from when a child Span must be created, e.g. in case
of the service making an RPC to another service.

	When making outbound calls to another service, the current Span must be
retrieved from request-local storage, a child span must be created (e.g., by
using the start_child_span() helper), and that child span must be embedded
into the outbound request (e.g., using HTTP headers) via OpenTracing’s
inject/extract API.

Below are the code examples for steps 1 and 3. Implementation of request-local
storage needed for step 2 is specific to the service and/or frameworks /
instrumentation libraries it is using (TODO: reference to other OSS projects
with examples of instrumentation).

Inbound request

Somewhere in your server’s request handler code:

def handle_request(request):
 span - before_request(request, opentracing.tracer)
 # use span as Context Manager to ensure span.finish() will be called
 with span:
 # store span in some request-local storage
 with RequestContext(span):
 # actual business logic
 handle_request_for_real(request)

def before_request(request, tracer):
 span_context - tracer.extract(
 format-Format.HTTP_HEADERS,
 carrier-request.headers,
)
 span - tracer.start_span(
 operation_name-request.operation,
 child_of(span_context))
 span.set_tag('http.url', request.full_url)

 remote_ip - request.remote_ip
 if remote_ip:
 span.set_tag(tags.PEER_HOST_IPV4, remote_ip)

 caller_name - request.caller_name
 if caller_name:
 span.set_tag(tags.PEER_SERVICE, caller_name)

 remote_port - request.remote_port
 if remote_port:
 span.set_tag(tags.PEER_PORT, remote_port)

 return span

Outbound request

Somewhere in your service that’s about to make an outgoing call:

create and serialize a child span and use it as context manager
with before_http_request(
 request-out_request,
 current_span_extractor-RequestContext.get_current_span):

 # actual call
 return urllib2.urlopen(request)

def before_http_request(request, current_span_extractor):
 op - request.operation
 parent_span - current_span_extractor()
 outbound_span - opentracing.tracer.start_span(
 operation_name-op,
 parent-parent_span
)

 outbound_span.set_tag('http.url', request.full_url)
 service_name - request.service_name
 host, port - request.host_port
 if service_name:
 outbound_span.set_tag(tags.PEER_SERVICE, service_name)
 if host:
 outbound_span.set_tag(tags.PEER_HOST_IPV4, host)
 if port:
 outbound_span.set_tag(tags.PEER_PORT, port)

 http_header_carrier - {}
 opentracing.tracer.inject(
 span-outbound_span,
 format-Format.HTTP_HEADERS,
 carrier-http_header_carrier)
)
 for key, value in http_header_carrier.iteritems():
 request.add_header(key, value)

 return outbound_span

Development

Tests

virtualenv env
. ./env/bin/activate
make bootstrap
make test

Documentation

virtualenv env
. ./env/bin/activate
make bootstrap
make docs

The documentation is written to docs/_build/html.

Releases

Before new release, add a summary of changes since last version to CHANGELOG.rst

pip install zest.releaser[recommended]
prerelease
release
git push origin master --follow-tags
python setup.py sdist upload -r pypi upload_docs -r pypi
postrelease
git push

Python API

Classes

	
class opentracing.Span(tracer, context)

	Span represents a unit of work executed on behalf of a trace. Examples of
spans include a remote procedure call, or a in-process method call to a
sub-component. Every span in a trace may have zero or more causal parents,
and these relationships transitively form a DAG. It is common for spans to
have at most one parent, and thus most traces are merely tree structures.

Span implements a Context Manager API that allows the following usage:

with tracer.start_span(operation_name='go_fishing') as span:
 call_some_service()

In the Context Manager syntax it’s not necessary to call span.finish()

	
context

	Provides access to the SpanContext associated with this Span.

The SpanContext contains state that propagates from Span to Span in a
larger trace.

	Returns

	returns the SpanContext associated with this Span.

	
finish(finish_time=None)

	Indicates that the work represented by this span has completed or
terminated.

With the exception of the Span.context property, the semantics of all
other Span methods are undefined after finish() has been invoked.

	Parameters

	finish_time – an explicit Span finish timestamp as a unix
timestamp per time.time()

	
get_baggage_item(key)

	Retrieves value of the Baggage item with the given key.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – key of the Baggage item

:rtype : str
:return: value of the Baggage item with given key, or None.

	
log(**kwargs)

	DEPRECATED

	
log_event(event, payload=None)

	DEPRECATED

	
log_kv(key_values, timestamp=None)

	Adds a log record to the Span.

For example:

span.log_kv({
 "event": "time to first byte",
 "packet.size": packet.size()})

span.log_kv({"event": "two minutes ago"}, time.time() - 120)

	Parameters

	
	key_values (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict of string keys and values of any type

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – A unix timestamp per time.time(); current time if
None

	Returns

	Returns the Span itself, for call chaining.

	Return type

	Span

	
set_baggage_item(key, value)

	Stores a Baggage item in the span as a key/value pair.

Enables powerful distributed context propagation functionality where
arbitrary application data can be carried along the full path of
request execution throughout the system.

Note 1: Baggage is only propagated to the future (recursive) children
of this Span.

Note 2: Baggage is sent in-band with every subsequent local and remote
calls, so this feature must be used with care.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Baggage item key

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – Baggage item value

:rtype : Span
:return: itself, for chaining the calls.

	
set_operation_name(operation_name)

	Changes the operation name.

	Parameters

	operation_name – the new operation name

	Returns

	Returns the Span itself, for call chaining.

	
set_tag(key, value)

	Attaches a key/value pair to the span.

The value must be a string, a bool, or a numeric type.

If the user calls set_tag multiple times for the same key,
the behavior of the tracer is undefined, i.e. it is implementation
specific whether the tracer will retain the first value, or the last
value, or pick one randomly, or even keep all of them.

	Parameters

	
	key – key or name of the tag. Must be a string.

	value – value of the tag.

	Returns

	Returns the Span itself, for call chaining.

	Return type

	Span

	
tracer

	Provides access to the Tracer that created this Span.

	Returns

	returns the Tracer that created this Span.

	
class opentracing.SpanContext

	SpanContext represents Span state that must propagate to descendant
Spans and across process boundaries.

SpanContext is logically divided into two pieces: the user-level “Baggage”
(see set_baggage_item and get_baggage_item) that propagates across Span
boundaries and any Tracer-implementation-specific fields that are needed to
identify or otherwise contextualize the associated Span instance (e.g., a
<trace_id, span_id, sampled> tuple).

	
baggage

	Return baggage associated with this SpanContext.
If no baggage has been added to the span, returns an empty dict.

The caller must not modify the returned dictionary.

See also: Span.set_baggage_item() / Span.get_baggage_item()

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns

	returns baggage associated with this SpanContext or {}.

	
class opentracing.Tracer

	Tracer is the entry point API between instrumentation code and the
tracing implementation.

This implementation both defines the public Tracer API, and provides
a default no-op behavior.

	
extract(format, carrier)

	Returns a SpanContext instance extracted from a carrier of the
given format, or None if no such SpanContext could be found.

The type of carrier is determined by format. See the
opentracing.propagation.Format class/namespace for the built-in
OpenTracing formats.

Implementations MUST raise opentracing.UnsupportedFormatException if
format is unknown or disallowed.

Implementations may raise opentracing.InvalidCarrierException,
opentracing.SpanContextCorruptedException, or implementation-specific
errors if there are problems with carrier.

	Parameters

	
	format – a python object instance that represents a given
carrier format. format may be of any type, and format equality
is defined by python == equality.

	carrier – the format-specific carrier object to extract from

	Returns

	a SpanContext instance extracted from carrier or None if no
such span context could be found.

	
inject(span_context, format, carrier)

	Injects span_context into carrier.

The type of carrier is determined by format. See the
opentracing.propagation.Format class/namespace for the built-in
OpenTracing formats.

Implementations MUST raise opentracing.UnsupportedFormatException if
format is unknown or disallowed.

	Parameters

	
	span_context – the SpanContext instance to inject

	format – a python object instance that represents a given
carrier format. format may be of any type, and format equality
is defined by python == equality.

	carrier – the format-specific carrier object to inject into

	
start_span(operation_name=None, child_of=None, references=None, tags=None, start_time=None)

	Starts and returns a new Span representing a unit of work.

Starting a root Span (a Span with no causal references):

tracer.start_span('...')

Starting a child Span (see also start_child_span()):

tracer.start_span(
 '...',
 child_of=parent_span)

Starting a child Span in a more verbose way:

tracer.start_span(
 '...',
 references=[opentracing.child_of(parent_span)])

	Parameters

	
	operation_name – name of the operation represented by the new
span from the perspective of the current service.

	child_of – (optional) a Span or SpanContext instance representing
the parent in a REFERENCE_CHILD_OF Reference. If specified, the
references parameter must be omitted.

	references – (optional) a list of Reference objects that identify
one or more parent SpanContexts. (See the Reference documentation
for detail)

	tags – an optional dictionary of Span Tags. The caller gives up
ownership of that dictionary, because the Tracer may use it as-is
to avoid extra data copying.

	start_time – an explicit Span start time as a unix timestamp per
time.time()

	Returns

	Returns an already-started Span instance.

	
class opentracing.ReferenceType

	A namespace for OpenTracing reference types.

See http://opentracing.io/spec for more detail about references,
reference types, and CHILD_OF and FOLLOWS_FROM in particular.

	
class opentracing.Reference

	A Reference pairs a reference type with a referenced SpanContext.

References are used by Tracer.start_span() to describe the relationships
between Spans.

Tracer implementations must ignore references where referenced_context is
None. This behavior allows for simpler code when an inbound RPC request
contains no tracing information and as a result tracer.extract() returns
None:

parent_ref = tracer.extract(opentracing.HTTP_HEADERS, request.headers)
span = tracer.start_span(
 'operation', references=child_of(parent_ref)
)

See child_of and follows_from helpers for creating these references.

	
class opentracing.Format

	A namespace for builtin carrier formats.

These static constants are intended for use in the Tracer.inject() and
Tracer.extract() methods. E.g.:

tracer.inject(span.context, Format.BINARY, binary_carrier)

	
BINARY = 'binary'

	The BINARY format represents SpanContexts in an opaque bytearray carrier.

For both Tracer.inject() and Tracer.extract() the carrier should be a
bytearray instance. Tracer.inject() must append to the bytearray carrier
(rather than replace its contents).

	
HTTP_HEADERS = 'http_headers'

	The HTTP_HEADERS format represents SpanContexts in a python dict mapping
from character-restricted strings to strings.

Keys and values in the HTTP_HEADERS carrier must be suitable for use as
HTTP headers (without modification or further escaping). That is, the
keys have a greatly restricted character set, casing for the keys may not
be preserved by various intermediaries, and the values should be
URL-escaped.

NOTE: The HTTP_HEADERS carrier dict may contain unrelated data (e.g.,
arbitrary gRPC metadata). As such, the Tracer implementation should use a
prefix or other convention to distinguish Tracer-specific key:value
pairs.

	
TEXT_MAP = 'text_map'

	The TEXT_MAP format represents SpanContexts in a python dict mapping from
strings to strings.

Both the keys and the values have unrestricted character sets (unlike the
HTTP_HEADERS format).

NOTE: The TEXT_MAP carrier dict may contain unrelated data (e.g.,
arbitrary gRPC metadata). As such, the Tracer implementation should use a
prefix or other convention to distinguish Tracer-specific key:value
pairs.

Utility Functions

	
opentracing.start_child_span(parent_span, operation_name, tags=None, start_time=None)

	A shorthand method that starts a child_of span for a given parent span.

Equivalent to calling

	parent_span.tracer().start_span(

	operation_name,
references=opentracing.child_of(parent_span.context),
tags=tags,
start_time=start_time)

	Parameters

	
	parent_span – the Span which will act as the parent in the returned
Span’s child_of reference.

	operation_name – the operation name for the child Span instance

	tags – optional dict of Span Tags. The caller gives up ownership of
that dict, because the Tracer may use it as-is to avoid extra data
copying.

	start_time – an explicit Span start time as a unix timestamp per
time.time().

	Returns

	Returns an already-started Span instance.

	
opentracing.child_of(referenced_context=None)

	child_of is a helper that creates CHILD_OF References.

	Parameters

	referenced_context – the (causal parent) SpanContext to reference.
If None is passed, this reference must be ignored by the tracer.

	Return type

	Reference

	Returns

	A Reference suitable for Tracer.start_span(…, references=…)

	
opentracing.follows_from(referenced_context=None)

	follows_from is a helper that creates FOLLOWS_FROM References.

	Parameters

	referenced_context – the (causal parent) SpanContext to reference
If None is passed, this reference must be ignored by the tracer.

	Return type

	Reference

	Returns

	A Reference suitable for Tracer.start_span(…, references=…)

Exceptions

	
class opentracing.InvalidCarrierException

	InvalidCarrierException should be used when the provided carrier
instance does not match what the format argument requires.

See Tracer.inject() and Tracer.extract().

	
class opentracing.SpanContextCorruptedException

	SpanContextCorruptedException should be used when the underlying span
context state is seemingly present but not well-formed.

See Tracer.inject() and Tracer.extract().

	
class opentracing.UnsupportedFormatException

	UnsupportedFormatException should be used when the provided format
value is unknown or disallowed by the Tracer.

See Tracer.inject() and Tracer.extract().

History

1.2.3 (unreleased)

	Added sphinx-generated documentation.

1.2.2 (2016-10-03)

	Fix KeyError when checking kwargs for optional values

1.2.1 (2016-09-22)

	Make Span.log(self, **kwargs) smarter

1.2.0 (2016-09-21)

	Add Span.log_kv and deprecate older logging methods

1.1.0 (2016-08-06)

	Move set/get_baggage back to Span; add SpanContext.baggage

	Raise exception on unknown format

2.0.0.dev3 (2016-07-26)

	Support SpanContext

2.0.0.dev1 (2016-07-12)

	Rename ChildOf/FollowsFrom to child_of/follows_from

	Rename span_context to referee in Reference

	Document expected behavior when referee=None

2.0.0.dev0 (2016-07-11)

	Support SpanContext (and real semvers)

1.0rc4 (2016-05-21)

	Add standard tags per http://opentracing.io/data-semantics/

1.0rc3 (2016-03-22)

	No changes yet

1.0rc3 (2016-03-22)

	Move to simpler carrier formats

1.0rc2 (2016-03-11)

	Remove the Injector/Extractor layer

1.0rc1 (2016-02-24)

	Upgrade to 1.0 RC specification

0.6.3 (2016-01-16)

	Rename repository back to opentracing-python

0.6.2 (2016-01-15)

	Validate chaining of logging calls

0.6.1 (2016-01-09)

	Fix typo in the attributes API test

0.6.0 (2016-01-09)

	Change inheritance to match api-go: TraceContextSource extends codecs,

Tracer extends TraceContextSource
- Create API harness

0.5.2 (2016-01-08)

	Update README and meta.

0.5.1 (2016-01-08)

	Prepare for PYPI publishing.

0.5.0 (2016-01-07)

	Remove debug flag

	Allow passing tags to start methods

	Add Span.add_tags() method

0.4.2 (2016-01-07)

	Add SPAN_KIND tag

0.4.0 (2016-01-06)

	Rename marshal -> encode

0.3.1 (2015-12-30)

	Fix std context implementation to refer to Trace Attributes instead of metadata

0.3.0 (2015-12-29)

	Rename trace tags to Trace Attributes. Rename RPC tags to PEER. Add README.

0.2.0 (2015-12-28)

	Export global tracer variable.

0.1.4 (2015-12-28)

	Rename RPC_SERVICE tag to make it symmetric

0.1.3 (2015-12-27)

	Allow repeated keys for span tags; add standard tag names for RPC

0.1.2 (2015-12-27)

	Move creation of child context to TraceContextSource

0.1.1 (2015-12-27)

	Add log methods

0.1.0 (2015-12-27)

	Initial public API

Index

 B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | R
 | S
 | T
 | U

B

 	
 	baggage (opentracing.SpanContext attribute)

 	
 	BINARY (opentracing.Format attribute)

C

 	
 	child_of() (in module opentracing)

 	
 	context (opentracing.Span attribute)

E

 	
 	extract() (opentracing.Tracer method)

F

 	
 	finish() (opentracing.Span method)

 	
 	follows_from() (in module opentracing)

 	Format (class in opentracing)

G

 	
 	get_baggage_item() (opentracing.Span method)

H

 	
 	HTTP_HEADERS (opentracing.Format attribute)

I

 	
 	inject() (opentracing.Tracer method)

 	
 	InvalidCarrierException (class in opentracing)

L

 	
 	log() (opentracing.Span method)

 	
 	log_event() (opentracing.Span method)

 	log_kv() (opentracing.Span method)

R

 	
 	Reference (class in opentracing)

 	
 	ReferenceType (class in opentracing)

S

 	
 	set_baggage_item() (opentracing.Span method)

 	set_operation_name() (opentracing.Span method)

 	set_tag() (opentracing.Span method)

 	Span (class in opentracing)

 	
 	SpanContext (class in opentracing)

 	SpanContextCorruptedException (class in opentracing)

 	start_child_span() (in module opentracing)

 	start_span() (opentracing.Tracer method)

T

 	
 	TEXT_MAP (opentracing.Format attribute)

 	
 	Tracer (class in opentracing)

 	tracer (opentracing.Span attribute)

U

 	
 	UnsupportedFormatException (class in opentracing)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 OpenTracing API for Python

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

